

on Florida's Gulf Coast

Radiation Destruction of Glycine under Astrophysical Conditions

Jan-Luca Bell (Eckerd College)

Dr. Reggie Hudson (GSFC, Eckerd College)

Dr. Marla Moore (GSFC)

CAUTION RADIATION AREA

Why Study Amino Acids?

Relevance of the study:

- Amino acids (AA) may have played an important role in the origin of life
 - AA have been found in Stardust sample return mission
 - Lab simulations have confirmed AA formation in environments in dense clouds
 - AA formation may also occur on icy satellites
- Ionizing radiation in all these environments

Radiation in Space

Magnetospheric >> Cosmic

Magnetospheric << Cosmic

Experimental Methods

- Sublimation of glycine onto cold substrate
- Proton irradiation to simulate cosmic radiation
- Monitoring the rate of destruction by IR spectroscopy
- Sample thickness monitored with laser interferometry

Experimental Methods

Half-Life Doses (eV / molecule)

T (K)	Glycine	Water + Glycine (3:1)
15	17.9	4.21
100	21.0	5.63
140	21.6	5.99

- Faster destruction at lower temperatures between 15 140 K
 - Approx. 20 % slower
- Approx. 4x faster destruction in water

Estimated Half-Lives of Glycine (in Years) *

Object	t _{1/2} at ~1 μm	t _{1/2} at 1 m Depth
Mars	2 x 10 ⁷	6 x 10 ⁷
Europa	2 x 10 ⁻¹	1 x 10 ⁶
Titan	3 x 10 ³	2 x 10 ¹⁰
Pluto	2 x 10 ⁸	8 x 10 ⁸
Oort Cloud Comet	3 x 10 ⁴	3 x 10 ⁸
Ice Grain in Dense Cloud	1 x 10 ⁶	

^{*}Estimates are based on published dose rates

t_{1/2} – time required to decompose half the glycine molecules

Conclusion

- Ionizing radiation affects the preservation of AA
- Destruction of glycine increases in the presence of water
 - Hydroxyl radical may enhance the rate of destruction

Conclusion

Slower destruction rate of glycine at higher temperature (~20 %)

Why?

- Reformation of glycine at higher temperatures?
- Slower destruction of zwitterion which is present at higher temperatures?
 - Zwitterionic form is present at higher temperatures

< ~ 100 K

> ~ 100 K

Acknowledgements

Dr. Reggie Hudson

Dr. Marla Moore

Dr. Michael Mumma

Corinne Eby

Tom Ward

Eugene Geraschenko

Goddard Center for Astrobiology

NASA

Eckerd College